Masonry wall systems and insulation

Photo-9

Today’s high-performance building market is driven by increasingly stringent energy codes and a growing demand for greater building efficiency, sustainability, and affordability—meaning specifying and building masonry cavity walls and adhered masonry walls with materials that work together as a functioning system is more critical than ever.

Read More

Fluid-applied thermal break coatings 101

4

Architects designing with concrete balconies, cantilevered beams, roof penetrations, parapets, canopies, spandrel glass, and other ornamental architectural features are often limited in executing these design elements because they can create thermal bridges that extend beyond the insulation systems within the building envelope. This can cause condensation buildup in exterior systems and significant loss of energy performance for the whole building.

Read More

Metal composite panels with continuous insulation

5 IMG_0108

There are many different metal composite panel (MCP) assemblies with varying strengths. Traditionally, these claddings are simply fastened without insulation to the structural wall, through membrane water-resistive barriers (WRBs) and gypsum sheathing. However, some proprietary MCPs are fastened through continuous insulation (ci) to the structural wall. What advantages can this provide, not only with respect to thermal performance, but also durability and life safety?

Read More

Continuing Education on Continuous Insulation

insulation_application of Sto Therm ci XPS system on a high rise condominium building

Continuous insulation (ci) has been a component of exterior wall assemblies for almost a half-century in North America. By minimizing energy loss caused by thermal bridging and the risk of condensation caused by water vapor diffusion, exterior ci can improve building durability and benefit the environment. However, using rigid foam plastic comes with certain design considerations that must be reviewed early in the design process.

Read More