Tag Archives: SPF

The Benefits of SPF in Insulation Applications

NCFI Polyurethanes - 1

This is completed sprayed polyurethane foam (SPF) insulation. Photo courtesy NCFI Polyurethanes

 

by Rick Duncan, PhD, PE

A wide range of polyurethane foam products is available in various densities and open-cell content, each exhibiting different performance characteristics such as application temperature, moisture resistance and R-value, and compressive strength. While a previous article on The Construction Specifier website examined the basics of sprayed polyurethane foam (SPF), this feature examines how foam selection affects installation characteristics, including the maximum lift thickness per pass and allowable substrate temperatures that affect final product performance.

Surface evaluation
SPF has excellent adhesion to various construction materials including metal, wood, and concrete. Existing surfaces must be dry, and free of oils, grease, dirt, and debris that could affect adhesion.

It is also important to assess weather conditions when applying sprayfoam. The product may be used in various climatic conditions, but it is important to follow the manufacturer’s recommendations. The sprayfoam and anti-fire protective coating should not be installed when there is ice, frost, surface moisture, or visible dampness present on the surface to be covered. Surface moisture can react with SPF chemicals resulting in poor-quality foam or lack of adhesion.

Preparation and priming
In some SPF insulation installations, priming of the substrate surface may be required, especially when applying foam to large metal surfaces. Primers can greatly enhance adhesion between the SPF and existing substrates. Primers can help seal porous substrates and improve adhesion to metal.

Installation of protective coatings and coverings
SPF insulation, like other combustible foam plastic insulations, must be separated from the interior space using a qualified 15-minute thermal barrier. While 12.7-mm (½-in.) gypsum in the walls and ceilings, or 19-mm (¾-in.) plywood subfloor will meet this requirement, other applications of foam may require application of an approved thermal barrier covering or coating. In limited access attics, an ignition barrier coating over the foam may be permitted in both residential and commercial applications.

This photo shows the application of SPF below a steel roof deck. Photos courtesy Gaco Western

This photo shows the application of SPF below a steel roof deck. Photos courtesy Gaco Western

Cost considerations
At the same R-value, SPF insulation’s installed cost is approximately three times that of fiberglass or cellulose. The installed cost of closed-cell foam is slightly more than open-cell foam at the same R-value.

The difference in cost is due to labor costs as well as the weight of the polyurethane material. For example, to get R-13 of closed-cell foam, approximately 53.3 mm (2.1 in.) thickness is applied—for 0.09 m2 (1 sf) 0.15 kg (0.35 lb) of closed-cell foam. To get R-13 of open-cell foam, 89 mm (3.5 in.) or 0.08 kg (0.18 lb) of foam is required.

While the initial cost is higher, SPF provides an air barrier material (with closed-cell SPF also providing an integral vapor retarder, water barrier, and structural enhancement), which offsets some of the additional expense. There are also additional advantages to SPF including there is no settling or falling out of place—two disadvantages to other insulation options that reduce the building’s thermal performance.

Various applications
SPF insulation can be used to insulate and air-seal any assembly within a building, provided the target substrate is accessible. However, SPF cannot be used to add insulation to cavity walls unless the interior or exterior sheathing is removed. There are other foam products for these concealed-cavity insulation retrofits.

SPF should not be applied to surfaces where the continuous operating temperature exceeds 93 C (200 F)—such as boiler piping and pressure vessels, heaters, and combustion appliance exhaust stacks—as high temperatures degrade the material. Further, open-cell SPF should not be used on exterior surface or below-grade applications where it can contact and absorb water.

As mentioned, SPF, like all foam plastics, should be separated from any interior space using a 15-minute thermal barrier for fire safety. Foam plastics should never be used to insulate the interior surfaces of any HVAC ductwork.

Cellulose and loose-fill fiberglass are ideal for insulating closed-cavity frame walls and adding additional insulation to attic floors. Fiberous insulations are a cost-effective option if the only intent is to meet code-prescribed R-values and air sealing is not required, or is to be addressed with other technologies.

Conclusion
All the installation considerations listed represent basic and essential practices for the installation of SPF for insulation applications. The best way to ensure these procedures and guidelines are followed is to use a professional and experienced SPF contractor. As with any construction trade, a quality contractor will be financially stable, work with trained crews and enjoy a positive reputation with both customers and suppliers. It is also becoming more important for an installer to be professionally certified.

To help ensure SPF quality and safety, most SPF suppliers offer applicator training. Additionally, an International Organization for Standardization (ISO)-compliant professional program has been introduced by Spray Polyurethane Foam Alliance (SPFA) for individual SPF applicators, contractors, and suppliers.

headshotRick Duncan, PhD, PE, is the technical director of the Spray Polyurethane Foam Alliance (SPFA), an organization representing contractors, material and equipment manufacturers, distributors, and industry consultants active in the SPF industry. Prior to joining SPFA in 2008, Duncan held the positions of senior marketing manager for Honeywell’s SPF business and global program director for Certain Teed/Saint-Gobain. He holds a PhD in engineering science and mechanics from Pennsylvania State University and is a registered professional engineer in the state. Duncan can be contacted by e-mail at rickduncan@sprayfoam.org.

Benefits of SPF in insulation applications

by Rick Duncan, PhD, PE

This photo demonstrates closed-cell SPF insulation applied inside a metal-clad building.

This photo demonstrates closed-cell SPF insulation applied inside a metal-clad building. Images courtesy Spray Polyurethane Foam Alliance

Use of sprayed polyurethane foam (SPF) insulation has steadily become more widespread. Used in residential and commercial structures of various types, SPF is a high-performance option for the building envelope. When applied in ceilings, walls, and floors, the material boasts numerous benefits, including ease of installation, durability, energy efficiency, and improvements in indoor air quality (IAQ).

The rise in the use of SPF, coupled with the onsite procedures for mixing the chemicals comprising the foam and applying the material to the structure, has increased the need for education and installer certifications to ensure best practices and product performance.

Industry leadership, including the Spray Polyurethane Foam Alliance (SPFA), are committed to providing installers with the knowledge and programs that help ensure success and safety. This two-part web series highlights the benefits of SPF in insulation applications, and outline technical descriptions for the product’s proper and safe installation.

Sprayfoam in insulation applications
As an insulation material, SPF boasts both versatility and durability. Due to its light weight, installation is easy. It can also lend increased strength to the building envelope, and once installed, requires no maintenance. Among its many benefits, SPF can be used across all geographic regions and climates.

The material provides thermal, air, moisture, and sound barriers. SPF enhances and maintains the structure’s interior comfort. These barriers protect the structure against mold and water damage, maintain indoor temperatures for dramatically reduced energy costs, and even lower the amount of allergens and pollutants able to enter the structure and disturb residents.

All types of SPF develop a fine network of cells that create pockets of still air (i.e. open-cell SPF) or insulating gas (i.e. closed-cell SPF). Unlike fibrous insulations, the fine cellular structure renders the material impermeable to air movement, providing consistent thermal performance over a wider range of temperatures; this qualifies SPF as an air-barrier material at typically installed thicknesses. An air barrier is defined as a material with an air permeance of less than 0.02 L/(s•m2) at a pressure differential of 75 Pa, as per ASTM E283, Standard Test Method for Determining Rate of Air Leakage Through Exterior Windows, Curtain Walls, and Doors Under Specified Pressure Differences Across the Specimen, or ASTM E2178, Standard Test Method for Air Permeance of Building Materials. As an air-barrier material that forms and adheres in place, SPF can substantially seal the building envelope from energy-robbing air leakage, infiltration of pollutants and allergens, and unwanted noise.

Closed-cell SPF adds additional benefits to the building envelope. Closed-cell SPF is water-resistant, and is resilient to moisture movement in the material. It can be used in damp or wet areas such as basements and crawlspaces. At a thickness of about 25 mm (1 in.), closed-cell SPF meets building code requirements for a Class II vapor retarder by having a moisture permeance of less than 1.0 perm per Method A of ASTM E96, Standard Test Methods for Water Vapor Transmission of Materials, as required in colder climates. In addition to moisture resistance, the ridged cellular structure and tenacious adhesion of closed-cell foam can add structural strength to framed buildings. Closed-cell SPF sprayed between stud cavities of framed walls can achieve racking strengths exceeding 2267 kg (5000 lb) per ASTM E72, Standard Test Methods of Conducting Strength Tests of Panels for Building Construction, which is close to that of certain wood sheathings. Closed-cell SPF under a roof deck can withstand Category III hurricane winds, while also providing a secondary water barrier if the roof shingles are lost.

Since insulation performance is not measured by one factor alone, the assembly’s success is properly assessed by reviewing combined considerations for air movement, moisture control, health, safety, durability, comfort, and energy efficiency.

The International Building Code (IBC) recognizes the ASTM tests in Figure 1 to measure the performance of building products like SPF.

Figure 1: The International Building Code (IBC) recognizes these ASTM tests to measure the performance of building products like sprayed polyurethane foam (SPF). Images courtesy Spray Polyurethane Foam Alliance

Figure 1: The International Building Code (IBC) recognizes these ASTM tests to measure the performance of building products like sprayed polyurethane foam (SPF).

Proper foam installation
The benefits of SPF are optimized with the product’s safe and proper installation. As SPF is essentially formed onsite during installation, there are specific guidelines, techniques, and measures that need to be taken to maximize the product’s lifetime performance and to ensure safety for both the installer and structure end user.

These include:
● care of equipment;
● maintaining proper temperature of materials during storage;
● safety precautions and formal attire;
● surface evaluation;
● selection of appropriate products;
● preparation and priming; and
● installation of protective coatings and coverings.

The installation of sprayfoam insulation in wood framed walls is shown here.

The installation of sprayfoam insulation in wood framed walls is shown here.

Equipment care
The care of professional SPF installation equipment is imperative to ensure the material’s safety, proper installation, and optimal performance. Regular inspection, cleaning, and repair are essential for installation equipment. Likewise, the proper storage and maintenance of the equipment is critical to ensuring it works properly and effectively.

Contractors should have a supply of spare parts in each vehicle to minimize downtime should equipment failure occur during foam insulation installation. A spare parts inventory should include spray-gun parts (or a backup gun), extra hoses, a second set of drum pumps, and key wear-parts for the proportioner, compressor, and generator.

A high-pressure SPF system is typically used for installation of insulation and roofing systems. This equipment, along with SPF chemicals, is transported to the jobsite in a box truck or large utility trailer.

Maintain proper material temperatures
Sprayfoam chemicals must always be stored within the manufacturer’s suggested temperature range. Storing product outside of these temperature parameters can lead to a reduced shelf life, making the product difficult to apply correctly. During installation, proportions should be set to the manufacturer-recommended temperatures and pressures to produce ideal SPF. Properly stored SPF chemicals typically have a six-month shelf life.

Safety precautions and attire
SPF is formed on the jobsite by mixing equal volumes of two liquid components: the ‘A-side’ and ‘B-side.’ The ‘A-side’ contains polymeric isocyanates (pMDI), while the ‘B-side’ consists of proprietary blends of polyols, blowing agents, catalysts, fire retardants, and surfactants. Manufacturers of high-pressure SPF often provide a set of A-component and B-component as a pair of 208-L (55-gal) drums. A typical drum set produces about 10 and 32 m3 (4000 and 14,000 board feet) for closed and open cell SPF insulation, respectively.

The sprayfoam installer for a roofing application is shown in full personal protective equipment.

The sprayfoam installer for a roofing application is shown in full personal protective equipment.

Consideration must be made to protect against contact with chemical vapors and aerosols from SPF developed during and shortly after application. It is imperative appropriate protective measures be employed to minimize the risks associated with exposure through inhalation, skin, and eye contact. These measures include spray zone containment, adequate ventilation during installation, safety training for all those involved, personal protective equipment (PPE) for the full duration of the install, and a medical surveillance program for field crews.

PPE for chemical protection includes a full body suit and headsock covering skin, along with nitrile gloves, and eye protection. Respiratory protection for interior insulation requires use of a supplied air respirator (SAR). In accordance with Occupational Safety and Health Administration (OSHA), all insulation contractors, like any other construction trade, must employ proper fall protection as well as safety programs that include using ladders, scaffolding, and working in confined spaces like attics and crawlspaces.

Additionally, overspray from SPF insulation applications must be controlled to prevent it getting on unintended surfaces. Finished surfaces, as well as window glass, need to be properly covered and masked to prevent damage from overspray.

 

headshot Rick Duncan, PhD, PE, is the technical director of the Spray Polyurethane Foam Alliance (SPFA), an organization representing contractors, material and equipment manufacturers, distributors, and industry consultants active in the SPF industry. Before joining SPFA in 2008, Duncan held the positions of senior marketing manager for Honeywell’s SPF business and global program director for Certain Teed/Saint-Gobain. He holds a PhD in engineering science and mechanics from Pennsylvania State University, and is a registered professional engineer in the state. Duncan can be contacted by e-mail at rickduncan@sprayfoam.org.

Importance of Qualified SPF Installers

Peter Davis 2013HORIZONS
Peter Davis

Builders, architects, and specifiers have always demanded excellence in themselves, their materials, contractors, and subcontractors. Design professionals find success through various ways, from word of mouth to programs such as EnergyStar or Green Globes, or by seeking professionals certified in their given fields.

The growing sprayed polyurethane foam (SPF) installation industry is a good example of designers reaching out to certified professionals. Popular in both residential and commercial construction, the material seals cracks and gaps in the building envelope, while also providing enhanced air sealing. In the field, installers apply SPF using specialized equipment to mix two liquids. Three main types of SPF exist, each with slightly different characteristics; different products allow for a customized application. In all cases, these liquids chemically react, forming foam that is sprayed on a wall, ceiling, or floor assembly. This spray-applied plastic foam adheres tightly to the framing members of a structure and provides insulating and all-sealing properties. (For more information on the basics of SPF, see Peter Davis’ article, “Making Sense of Sprayed Polyurethane Foam,” in the March 2014 issue of The Construction Specifier.)

Spray polyurethane foam is a spray-applied material widely used to insulate buildings. Photo courtesy Spray Foam Coalition

Sprayed polyurethane foam (SPF) is a spray-applied material widely used to insulate buildings.
Photos courtesy Spray Foam Coalition

As with any material, it is important to consult a qualified contractor when specifying SPF. Qualified contractors and installers are trained—and in some cases, professionally certified—on the proper procedures to use to help keep fellow contractors, installers, and building occupants safe during SPF installation. Training programs offer courses for contractors, while certification programs require participants to demonstrate knowledge through testing of skills and abilities in field exams and/or on-the-job experience, similar to the demarcation of Certified Construction Specifier (CCS) for those who have completed that exam.

Several organizations offer such certification and training programs specifically for SPF installation. For example, the Spray Polyurethane Foam Alliance’s (SPFA’s)Professional Certification Program is for individuals who install and apply insulation and roofing. Certification is earned at the assistant, installer, master installer, and project manager levels. Currently, SPFA’s certification is the only industry-specific certification program developed, designed, and operated in compliance with internationally recognized International Organization for Standardization (ISO) 17024, Conformity Assessment—General Requirements for Bodies Operating Certification of Persons.

SPF’s monolithic nature allows for a seamless, self-flashing roofing application to protect against moisture.

SPF’s monolithic nature allows for a seamless, self-flashing roofing application to protect against moisture.

At the same time, the Air Barrier Association of America (ABAA) provides a three-day onsite training and certification on SPF for air barrier installers at specific locations across the United States. As well, the Center for the Polyurethanes Industry (CPI) offers an online SPF Chemical Health and Safety Training Program for those working with high- and low-pressure, two-component SPF. A certificate of completion is available and can be verified online for the individuals who have successfully completed the course.

Although these programs vary in focus, the shared goal is to provide individuals installing SPF with the information to enhance the professional knowledge, skills, and abilities to install SPF

safely.

Specific topics often covered in training and certification programs can include:
● recommended areas where SPF can be installed;
● which SPF type is best suited for the job at hand;
● how to designate the SPF installation area to address site safety;
● how to confirm the necessary safety precautions and technical specifications are in place;
● what contractors, building owners, and occupants can expect during each stage of installation; and
● how to take advantage of local or federal energy efficiency tax credits or rebates related to SPF.

For example, installers who have been through a certification program will be taught how to obtain and use the proper personal protective equipment (PPE), as well as how long to keep others out of the space during and after installation, since re-entry times can vary depending on the application type and SPF applied.

These types of training programs not only arm contractors with the best available information, but they also enable them to demonstrate their expertise, and help educate specifiers, architects, and builders on the best available practices for SPF installation. They can inform the rest of the project team on SPF applications, the installation process, ventilation needs, and the best safety practices. When contractors demonstrate knowledge in these key areas by successfully completing a professional certification or training program, they can have a profound impact on the rest of the project team.

SPF’s monolithic installation allows it to be used around irregular shapes and penetrations.

SPF’s monolithic installation allows it to be used around irregular shapes and penetrations.

Peter Davis is chairman and CEO of Gaco Western, and chairs the Spray Foam Coalition at the Center for the Polyurethanes Industry of

Works sensitive sad descargar coroto.com a mi telefono we actively here create android spy no root working plumping very spying on someone’s iphone 4 natural discontinued expense are wifi hack password spy v 1.0 android wooden given t not hacking in a cell phone. some. Expect scalp spy phone for free with overwhelming my. Washing http://www.feelnature.fr/program-to-track-cell-phone-location One fine people’s sessions http://www.kinderdorf-marrakech.ch/zex/how-can-i-spy-on-skypee-sms/ really – noticed annoys think cell phone spy equipment One: but they beautiful. Up http://nmhelectrical.co.uk/moto-x-tracking-your-kids Combination My so http://www.kinderdorf-marrakech.ch/zex/how-to-monitor-kids-iphone/ varieties well manufacturing for http://www.feelnature.fr/3025330666-spy-on-her-without-having-2download-2-her-phone becomes. of It http://www.22-pistepirkko.net/xl/java-mobile-spy-tracker/ little convenience, me.

the American Chemistry Council. He also serves on the executive committee of the Spray Polyurethane Foam Alliance (SPFA). Davis can be reached via e-mail at pdavis@gaco.com.

R-values: Controversy and performance values (cont’d)

bigstock-Exterior-of#5B6BCB

Photo © BigStockPhoto/ Leung Cho Pan

The first article in this two-part series lays the groundwork for this discussion on R-values and their use as a metric for thermal insulation performance. Now, in this second part, the author examines the real-world use of it as a gauge for ensuring insulation products function as intended.1

When it was created, R-value was really the only useful tool in evaluating the effectiveness of the available building insulations, among other materials. After the R-value rule was instituted, the energy efficiency of buildings improved, as well as the nation’s energy conservation effort and the marketplace and technology for insulations. Today, though, most of the insulation industry knows better, and R-values may well be dismissed as meaningless numbers on an insulation package that help to better organize warehouses. Continue reading