Tag Archives: EIFS

Continuing Education on Continuous Insulation

continuous - Tom's article 2015 - 5th-&-Alton Shopping-Center

All images courtesy Sto Corp.

by Tom Remmele, CSI
Continuous insulation (ci) has been a component of exterior wall assemblies for more than 40 years in North America and even longer in Europe. It has always been the smart way to design wall assemblies from the standpoint of energy conservation and water management. By minimizing energy loss caused by thermal bridging and the risk of condensation caused by water vapor diffusion, exterior ci can improve building durability and benefit the environment.

Standards-writing and regulatory bodies, government agencies, and the building science community are in alignment in viewing exterior ci as a sensible strategy to conserve energy in buildings. The American Society of Heating, Refrigeration, and Air-conditioning Engineers (ASHRAE) has steadily driven energy conservation standards—and hence, the International Energy Conservation Code (IECC)—to ci prescriptive R-value requirements (in combination with stud cavity insulation) as a pathway to greater energy conservation in buildings.

In sponsoring the 2012 IECC code changes, the Department of Energy (DOE) helped achieve the “largest one-step energy efficiency increase in the history of our energy code.” Building Science Corporation identifies the ‘perfect wall’ (i.e. one working in any climate zone), as having ci outbound of the structure. Thus, for the foreseeable future ci is likely to be a fixture in most exterior wall assemblies.

Types of foam plastic ci
Figure 1 summarizes properties of rigid cellular polystyrene and polyisocyanurate (polyiso) thermal insulations as published in ASTM C578-14, Standard Specification for Rigid, Cellular Polystyrene Insulation, and ASTM C1289-14, Standard Specification for Faced, Rigid Cellular Polyisocyanurate Thermal Insulation Board, respectively. Commonly used insulating materials conforming to these property requirements are Type I expanded polystyrene (EPS), Type IV extruded polystyrene (XPS), and Type I, Class 1 or 2 polyiso.

ContinuousInsulation_Figure1

Common types of rigid foam plastic continuous insulation (ci) used in exterior wall assemblies.

Each insulating material has its own benefits and limitations influencing which one should be used for a given project. For example, EPS is the insulation commonly used in exterior insulation and finish systems (EIFS) because of its dimensional stability, water vapor permeability, and adhesion compatibility with EIFS adhesives and base coats. Due to their higher R-values, XPS and polyiso boards are more commonly used behind brick veneer to allow for thinner wall sections. This becomes important when considering the total thickness of a brick veneer cavity wall with ci and the implications on size and thermal bridging of supporting shelf angles and lintels.

Water vapor permeability of the insulating material can be an advantage or disadvantage. For example, in hot, humid climate zones where vapor drive is predominantly inward, exterior polyiso or XPS insulation can retard inward vapor drive and reduce the potential for condensation on the relatively cold conditioned surface of interior drywall over metal studs. In mixed climates, where vapor drive is both inward and outward for long periods during the course of a year, EPS ci is advantageous because its higher vapor permeability allows water vapor to diffuse, which aids in drying of the wall assembly in the event of condensation.

A wall analysis during design is a valuable tool for selecting the best type of ci material in this regard. Dynamic computer models are a good approach, since they characterize wall assembly hygric performance through seasonal change, but even a simplified steady-state analysis for worst case winter and summer months can be a helpful tool to assist in making material choices for a given wall assembly.

Other things to consider beyond physical properties are jobsite handling, storage, and compatibility with other materials, as well as the construction Type, whether Types I−IV or Type V, and design wind pressure requirements. EPS and XPS have limited ultraviolet (UV) resistance and should not be left exposed to sun for extended periods as the surface will degrade (chalk).

While this degradation has no significant effect on R-value, it can interfere with adhesion of joint treatments, tapes, EIFS base coats, and membrane materials that rely on adhesion to the surface, unless the surface is rasped or sanded to remove the chalked material. Chalking is not an issue when the insulation is ‘faced’ with glass mat facing or aluminum foil facing as with most polyiso boards, although adhesion to the facing materials still has to be evaluated.

Equally important to consider (if not more so) on jobsites is the combustibility of foam plastics. They should be protected from sparks, flame, or any other source of ignition. All foam plastic insulation boards are produced with flame retardant, but they behave differently in the presence of flame; while EPS and XPS melt, polyiso chars.

Despite their combustibility, all these foam plastic insulating materials can be used on buildings required to be of noncombustible construction (Types I−IV) with proper material and ‘end use’ testing to support the proposed assembly. Likewise, they can all be used in wind-resistant assemblies provided they are constrained (i.e. sandwiched) in the negative and positive direction by another material (e.g. sheathing/cladding) capable of resisting design wind pressures. Alternatively, appropriate tests can be performed to determine wind load resistance of the insulation relative to project and/or building code requirements.

Fire safety considerations
Fire safety in the design of foam plastic-based wall assemblies is an important factor when considering their use. Since such materials are combustible, building codes strictly regulate the use of foam plastics. Chapter 26 of the 2015 International Building Code (IBC) has seven requirements that must be met for foam plastics to be approved for use in walls (Figure 2).

CS Feb FIgure 2 (2)

Summary of the 2015 International Building Code (IBC) Chapter 26 requirements for use of foam plastic insulation in exterior wall assemblies.

For the design professional, listing and labeling of the insulation by an approved independent third party is the first step in verifying code compliance. Most insulation board manufacturers hold International Code Council Evaluation Service (ICC-ES) evaluation reports (ESRs), or Underwriters Laboratory (UL) or other listings, simplifying verification.

These listings also demonstrate other aspects of code compliance, for example, compliance with flame spread and smoke development criteria to qualify as a Class A building material, or special uses such as below-grade or attic insulation. Other code compliance requirements are more difficult to verify because they involve wall assembly tests that may exist with the insulation board manufacturer, the cladding manufacturer, or, in some cases, with the air barrier/water-resistive barrier (WRB) manufacturer.

Potential heat, a measure of the foam plastic’s stored heat energy, is a function of the type of foam plastic insulation, its thickness, and density. IBC effectively limits potential heat for construction Types I−IV to the insulation thickness and density successfully tested in the National Fire Protection Association (NFPA) 285, Standard Fire Test Method for Evaluation of Fire Propagation Characteristics of Exterior Non-load-bearing Wall Assemblies Containing Combustible Components.

NFPA 285 is a qualifying wall assembly test for the use of foam plastic in wall assemblies of Types I, II, II, or IV construction. As a ‘worst-case’ surrogate for exterior wall fires, the test addresses the effects of a simulated fire in an interior room and vertical flame propagation from floor-to-floor and room-to-room vertically and laterally. An example of an assembly that meets NFPA 285 acceptance criteria is shown in Figure 3, and the actual test is depicted in Figure 4.

continuous_61s01

Figure 3: Exterior brick veneer wall assembly with ci that complies with National Fire Protection Association (NFPA) 285 acceptance criteria (refer to International Code Council Evaluation Service Reports (ICC-ESRs) 1233 [6] 2141[7]).

continuous_NFPA 285 Test

Figure 4: As shown above, NFPA 285 test exposes the wall assembly to fire from an interior compartment and evaluates vertical and lateral flame propagation.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

While the test enables approval of the assembly in Types I−IV construction, it also establishes limits—maximum allowable thickness and density of insulation and detailing around the opening that must conform to (or be more conservative, from a fire protection standpoint) what was tested. Test results can sometimes be extended to other claddings or backup wall construction when evaluated by a qualified fire protection engineer.

For example, in Figure 3, the results of the fire tests with masonry veneer over steel stud wall construction were extended to backup wall construction of concrete or concrete masonry unit (CMU) in lieu of steel stud with gypsum sheathing. Once again, ICC-ES evaluation reports can be a valuable resource for the design professional to know what assemblies have been tested and meet acceptance criteria, or where results of tests have been extended, evaluated, and recognized by ICC-ES.

NFPA 285 is not the only assembly test to be considered. ASTM E119-12a, Standard Test Methods for Fire Tests of Building Construction and Materials, is necessary when walls are required to have an hourly fire-resistance rating—a common requirement for commercial office, institutional, and some retail and multi-family type construction. The test evaluates the ability of the assembly to resist temperature rise, collapse, flaming, or ignition on the unexposed side of the assembly.

If the assembly is asymmetrical, it must be tested from both sides—in other words, with the fire originating from the interior or exterior. Further, the effects of a hose stream (used to provide additional structural evaluation) are evaluated to ensure the unexposed side remains intact and there is no breach or collapse of the assembly as a result of the hose stream.

Engineering analysis or modeling by a qualified fire protection engineer can be done to qualify substitute materials or to make minor revisions to what was tested to provide the design professional with a wider range of material options for the wall assembly. For example, if an hourly rating is achieved with a frame wall assembly with gypsum sheathing on the exterior and gypsum wall board on the interior, it is readily assumed a ‘mass wall’ fire-resistive wall construction (e.g. 152-mm [6-in.] cast-in-place concrete or 203-mm [8-in.] CMU) would provide equal or better resistance than the frame wall with the same exterior ci and cladding assembly. ICC-ES evaluation reports, UL listings, and Gypsum Association’s (GA’s) Fire Resistance Design Manual are valuable resources for the design professional to identify tested fire-resistance rated wall assemblies.

The last of the assembly tests is NFPA 268, Standard Test Method for Determining Ignitability of Exterior Wall Assemblies Using a Radiant Heat Energy Source. The test evaluates a wall assembly’s susceptibility to ignite from the radiant heat produced by a fire in an adjacent building. It is an important test for EIFS and other foam plastic-based wall assemblies that do not conform to one of the six wall covering exceptions listed in Section 2603.5.7 of the 2015 IBC:

  • 
minimum 15-minute thermal barrier;
  • 
minimum 25-mm (1-in.) of concrete or masonry;
  • 
at least 9.5-mm (38-in.) glass-fiber-reinforced concrete (GFRC);
  • 
metal-faced panels meeting the prescribed composition and thickness;
  • 
minimum 22.2-mm (78-in.) stucco; and
  • 
minimum 6-mm (14-in.) fiber cement lap, panel, or shingle siding.

A final requirement of the code for all types of construction is separation of the combustible foam plastic insulation from interior space with a 15-minute thermal barrier, typically 13-mm (12-in.) interior drywall or exterior gypsum sheathing. Commercial attic space or the interior wall area above suspended ceilings must have this 15-minute thermal barrier in place on the interior if it does not exist on the exterior side of the wall to separate the foam plastic insulation (with some exceptions permitted in the 2015 IBC’s Section 2603.4.1). Between-the-stud fiberglass batt insulation does not count as a thermal barrier since it is discontinuous.

Thus, building codes strictly regulate the use of foam plastics in wall assemblies. Manufacturers of wall assembly components—cladding, ci, air barrier, and sheathing—must demonstrate compliance with these requirements. ICC ESRs are an excellent resource to facilitate verification of wall assembly compliance.

Moisture-related durability considerations
One of the ways exterior ci can help in managing water is by changing the location of the dewpoint in cold climate zones so water vapor diffusion condensation potential is minimized or eliminated. Continuous insulation can also aid in controlling moisture in hot humid climate zones as demonstrated in recent research conducted by the US DOE and the EIFS Industry Members Association (EIMA). The research compared the hygrothermal performance of various wall assemblies—EIFS, stucco, brick, and fiber cement siding (15 assemblies in total)—installed on a test hut (Figure 5) exposed to natural weather in Hollywood, South Carolina (Climate Zone 3A).

edited

Figure 5: The image to the left shows an EIFS Industry Members Association/Department of Energy (EIMA/DOE) test hut in Hollywood, South Carolina with wall panels monitored for a two-year period for hygrothermal performance. On the right, the test hut rainwater collection device ‘delivers’ rain into the panel at the plane of the water-resistive barrier (WRB) during the second year of exposure. The device was intended to simulate a flaw (breach) in the panel exterior wallcovering.

Temperature, heat flux, relative humidity (RH), and moisture content measurements were taken 24 hours a day with sensors placed in the wall panels. After a little more than a year of exposure, a flaw (i.e. opening) was created in some of the wall panels to introduce rainwater onto the plane of the WRB behind the cladding. The cladding with ci performed the best from the standpoint of temperature and moisture control as measured by the heat flux sensor on the inside face of interior gypsum wallboard and the relative humidity sensor on the face of the wall sheathing directly behind the WRB (Figure 6).

continuous_EIMA Test Hut Data Profiles

Figure 6: Assembly with exterior ci shows improved moisture control in comparison to assemblies without ci as indicated by relative humidity (RH) measurements at the exterior face of the sheathing. The assemblies were installed over nominal 2×4 wood framing. In order, they are (a) 102-mm (4-in.) brick veneer cavity wall over paper water-resistive barrier (WRB) on 11-mm (7/16-in.) oriented strandboard (OSB) with unfaced R-11 batt insulation, (b) 102-mm exterior insulation finish system (EIFS) with fluid-applied air barrier/WRB on 13-mm (1/2-in.) plywood with no batt insulation, and (c) 22-mm (7/8-in.) portland cement stucco over two layers of paper WRB on 11-mm OSB with unfaced R-11 batt insulation.

The closer the heat flux sensor stayed to the zero base line (which would represent constant interior temperature), the better the assembly’s thermal performance. An average monthly relative humidity of below 80 percent was considered acceptable based on ASHRAE STP 160, Criteria for Moisture-control Design Analysis in Buildings. The ci assembly proved not only to be best from a thermal standpoint, but also kept wall components dry, even when rain was deliberately directed into the assembly during the second year of exposure. This is important not only from the standpoint of durability, but also because insulation, if it stays moist, loses some of its insulating value.

Key factors in the moisture control success of the ci assembly were:

  • 
exterior ci kept wall sheathing above the dewpoint during winter;
  • 
combination of low water absorption exterior finish materials and relatively low water vapor permeability of the insulation prevented high exterior RH in summer from significantly increasing the sheathing’s relative humidity;
  • 
seamless fluid-applied air barrier/WRB behind the cladding was effective in resisting air leakage (and condensation potential) and was unaffected by the rain introduced into the wall during the second year of exposure (the other claddings had paper WRBs); and
  • 
drainage feature of the ci assembly prevented excess amounts of rain from accumulating in the assembly.

Conclusion
As building codes have evolved to the point where ci is now mandatory for many wall assemblies, rigid foam plastic ci wall assemblies have become more prevalent than in the past. They have special design considerations that need to be addressed at the design stage with an awareness of what the building code requires in relation to the use of foam plastics and their effects on the physics of the wall construction, as well as design details.

While this feature looked at the basic types of materials available, and focused on fire safety and moisture-related durability, this author is also developing another technical article that explores the added complexity of design details, along with structural considerations, environmental impacts, and cost control for a future issue of The Construction Specifier.

Tom Remmele, CSI, is the director technical services/R&D for Sto Corp., a manufacturer of air barriers, coatings, exterior insulation and finish systems (EIFS), and stucco products. He has held technical management positions in the construction industry for more than 25 years. Remmele is a past Technical Committee chair of the EIFS Industry Members Association (EIMA). He can be reached at tremmele@stocorp.com.

Investigating EIFS Performance Across Climates: Exterior insulation and finishing systems studied in long-term test

Photo courtesy EIFS Industry Members Association

Photo courtesy EIFS Industry Members Association

by Ulf Wolf

Between January of 2005 and June of 2007, the Oak Ridge National Laboratory (ORNL) undertook an extensive EIFS Industry Members Association (EIMA)-sponsored trial comparing the moisture and temperature management properties of several exterior insulation and finishing system configurations with those of other claddings in a hot and humid climate. Now, a new third phase of the study is demonstrating the assembly’s potential for other climate zones.

As part of Phase I of the initial study, researchers designed and built a test facility in Hollywood, South Carolina near Charleston—a location typical of a mixed, coastal, Zone 3 climate, as prescribed in the 2006 International Energy Conservation Code (IECC). The flexible design allowed researchers to change the wall panels with ease and to control conditions inside the building by creating two zones within the building interior.

Interior temperature and relative humidity (RH) conditions were selected based on the proposed American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE) SPC 160P, Criteria for Moisture Control Design Analysis in Buildings. Building orientation and placement of the wall panels were determined based on a comprehensive study of historical weather patterns, including prevailing wind and precipitation direction.

The data were collected in two phases. In Phase I, 15 exterior cladding configurations—not only EIFS, but also stucco, brick, and cementitious paneling—were integrated into one side of the building (southeastern exposure), with the goal of having all the claddings exposed to similar weather conditions for a full weather year (15 months from January 2005 through May 2006).

In Phase II, simulated building envelope defects were introduced into some of the wall panels, which included newly constructed wall panels as well as some of the 20-month-aged wall panels from Phase I. (To simulate leaks, these defects allowed a certain amount of water to penetrate the outer envelope.) The goal was to assess the performance of cladding assemblies to water penetration, as well as the impact on the performance of wall assemblies from wall orientation on moisture infiltration, the type of water-resistive barriers (WRBs) used (e.g. sheet membranes versus liquid-applied), and different exterior cladding systems (e.g. EIFS and brick). In Phase II, wall panels were placed on both the building’s southeast and northwest sides, with data collected from May 2006 to June 2007.

CS_November_2014_HR-35CS_NOV2014.indd

 

 

 

 

 

 

Zone 3 conclusions
The findings of these trials, as published at the time, showed EIFS was capable of controlling temperature and moisture within the wall system; it also showed these assemblies outperformed other exterior claddings during the monitored year. Phase II further established that an EIFS system, with drainage consisting of a liquid-applied water-resistive barrier coating and 100 mm (4 in.) of expanded polystyrene (EPS) insulation board, performed the best of all tested systems.

In other words, given the specific parameters of this study, the EIFS wall configurations performed better than stucco (both three- and one-coat) and brick. The EIFS wall systems with drainage maintained a consistent, acceptable level of moisture (average monthly RH below 80 percent, as defined by ASHRAE SPC 160P) within the cladding, despite varying outdoor conditions when appropriate interior vapor retarders were used. Brick and stucco tended to accumulate slightly more moisture during both Phase I and Phase II of the project and retained moisture longer than EIFS.

The trial also found EIFS with a liquid-applied, water-resistive barrier coating readily dispersed moisture introduced by the building envelope flaws installed for Phase II, unlike other claddings that retained more water. Both Phase I and II trials also confirmed vertical ribbons of adhesive provide an effective means of drainage within an EIFS-clad wall assembly.

The research showed EIFS has the ability to maintain the acceptable balance of moisture and temperature control indicative of a well-designed, properly operating, energy-efficient building without moisture problems. To quote the ORNL report summary:

EIFS-clad wall assemblies with drainage outperform other typical exterior claddings during most of the year. The results also showed that EIFS is an excellent exterior cladding choice for achieving key building performance goals in a hot and humid climate, specifically a mixed, coastal, Zone 3 climate.

These trials, however, did not necessarily answer the questions or concerns any designer, contractor, or insurer operating outside mixed, coastal, Zone 3 might have about EIFS. In other words, how does it perform in Zones 1 to 2 and 4 to 8? This is where Phase III of the ORNL trials enters the picture.

CS_NOV2014.indd

Transient temperature at the interior surface of the wall (both Phases 1 and 2).

CS_NOV2014.indd

Transient moisture content in plywood sheathing board (both Phases 1 and 2).

 

 

 

 

 

 

ORNL trials’ Phase III
Having compiled the full data set from Phases I and II for the mixed, coastal climate, the task remained to extrapolate these findings across all U.S. climatic regions. One way to achieve this would have been to select sites in the various climate zones and constructed additional test facilities there for live data-collection. This, however, would have been neither practical nor cost-efficient. Rather, the task fell to ORNL (more specifically, program manager Andre Desjarlais) to create a reliable, computer-simulated trial for the remaining climate zones. Desjarlais’ reports, and a recent interview with this author, has provided the overview and summary of this third phase of the EIMA-sponsored EIFS trials in this article.

Running a computer simulation of this kind requires two virtual constructs validated as behaving and performing like real-world ones. First, there are the virtual panels, which are the computerized equivalent of the real-life, constructed panels used in the Phase I and II trials. Then, there are also the virtual climate zones—the computerized equivalent of the real-life humidity levels and weather patterns of actual climate zones.

The simulation consisted of creating four virtual panels (each fully corresponding to its live counterpart), which were then placed in each of the eight different virtual climate zones. They were then virtually exposed over three simulated ‘years’ to the humidity fluctuations and weather conditions of each respective zone. At the same time, the same hygrothermal measurements of these panels, as had been monitored during the live trials, were taken:

● temperature;
● relative humidity (RH);
● heat flux; and
● moisture content.

By the end of these simulated trials, ORNL had collected performance data equivalent to four different panels in eight different locations over three years.

CS_NOV2014.indd

CS_NOV2014.indd

 

 

 

 

 

 

 

 

The software tool
Virtual panels and climate require validated software tools to construct them. The tool used for this third phase of the trials was WUFI, which stands for Wärme und Feuchte Instationär (i.e. heat and moisture fluctuations)—a true and tested software tool long used to calculate the coupled heat and moisture transfer in building components.

This PC program allows realistic calculation of the transient coupled one-dimensional heat and moisture transport in multi-layer building components exposed to natural weather. WUFI is based on the latest findings regarding vapor diffusion and liquid transport in building materials and has been validated by detailed comparison with measurements obtained in the laboratory and on outdoor testing fields. The underlying model has been validated for more than 20 years.

WUFI, like the live study, takes into account not only thermal properties of a building component and their impact on heating losses, but also its hygric (moisture) performance since thermal and hygric behavior of a building component are closely interrelated—increased moisture content leads to heat loss, while thermal situation in turn affects moisture transport. Therefore, both have to be tracked in their mutual interdependence for an accurate result. WUFI accomplishes this.

CS_NOV2014.inddCS_NOV2014.inddCS_NOV2014.indd

 

 

 

 

 

Virtual panels and locations
Following the guidelines summarized in ASHRAE 160-2009, Criteria for Moisture-control Design Analysis in Buildings, each simulation was undertaken for a three-year period using the design ‘cold’ year. Four wall systems were selected for study, comprising the following components:

● EIFS Panel 2 (P2): 40-mm (1 1/2-in.) flat insulation, notched trowel attachment, drainage airspace created by vertical ribbons, liquid-applied weather barrier, plywood exterior sheathing, 50 x 100-mm (2 x 4-in.) framing 400-mm (16 in.) on center (oc), with unfaced R-11 fiberglass batts and no vapor retarder, a 13-mm (1/2-in.) gypsum board, and a 10-perm paint layer;
● EIFS Panel 5 (P5): 100-mm (4-in.) flat insulation, notched trowel attachment, drainage airspace created by vertical ribbons, liquid-applied weather barrier, plywood exterior sheathing, 50 x 100-mm (2 x 4-in.) framing 400-mm (16 in.) oc, with no cavity insulation and no vapor retarder, a 13-mm (1/2-in.) gypsum board, and a 10-perm paint layer.
● EIFS Panel 11 (P11): 40-mm (1 1/2-in.) flat insulation, notched trowel attachment, drainage airspace created by vertical ribbons, a liquid-applied weather barrier, ASTM C1177 exterior gypsum board,1 18-gauge 50 x 100-mm (2 x 4-in.) steel framing 400-mm (16-in.) oc, with unfaced R-11 fiberglass batts and no vapor retarder, a 13-mm (1/2-in.) gypsum board, and a 10-perm paint layer; and
● brick Panel 14 (P14): brick façade, 25-mm (1-in.) airspace, one layer of Grade D 60-minute building paper, oriented strandboard (OSB) exterior sheathing, 50 x 100-mm (2 x 4-in.) framing 400-mm (16 in.) oc, with unfaced R-11 fiberglass batts and no vapor retarder, a 13-mm (1/2-in.) gypsum board, and a 10-perm paint layer. Airspace was considered ventilated (open top and bottom).

The eight IECC climate zones modeled in this simulation (representing cities for Climate Zones 1 through 8, respectively) were:

● Miami, Florida;
● Austin, Texas;
● Atlanta, Georgia;
● Baltimore, Maryland;
● Chicago, Illinois;
● Minneapolis, Minnesota;
● Fargo, North Dakota; and
● Fairbanks, Alaska.

CS_November_2014_HR-41

 

 

 

 

 

 

 

Model validation
The first step of this simulation was to validate the model itself—that is, to ensure the virtual panels behave precisely like their real counterparts, given the same hygrothermal loads. For purposes of validation, the researchers selected eight different panels from Phases I and II to emulate with computer configurations. The panels chosen for this, and their makeup, are shown in Figure 1, which is taken from the ORNL report, “Energy and Moisture Impact on EIFS Walls in the USA.” (Note: The typical interior finish for all emulated systems was 13-mm [(½-in.)] drywall, primed and painted [one coat of acrylic paint]).

The validation of these eight selected wall systems ran for the combined length of Phases I and II and was performed using the measured Natural Exposure Test facility (NET) weather station data for Charleston, South Carolina, along with the measured indoor data, and all hygrothermal material properties measured during Phases I and II of this trial.

Figure 2 illustrates the validation process. Completed, this analysis demonstrated good agreement between the WUFI hygrothermal model and the Charleston South Carolina field data, the model trends at all times following those of the Phases I and II experimental data. Consequently, the researchers could now confidently predict the heat and moisture performance of the four walls systems selected for the final simulation.

Figures 3 through 5 illustrate the type of data collected during the validation phase. EIFS Panel 2 is used as an example in this case. These figures depict both the measured and predicted (simulated) factors as follows:

● Figure 3—interior surface temperature as measured by Thermistor 17 (T17);
● Figure 4—moisture content of the plywood sheathing as measured by Moisture Content Sensor 3 (MC3); and
● Figure 5— relative humidity of the interior surface of the plywood as measured by Relative Humidity Sensor 4 (RH4).

In all instances, the predicted parameters satisfactorily agreed with the measured results.

CS_November_2014_HR-42

 

 

 

 

 

 

 

The simulation
Using the validated model, the researchers now performed a hygrothermal WUFI analysis following the guidelines summarized in ASHRAE 160-2009. Each simulation was undertaken for a three-year period using the design ‘cold’ year. As mentioned, the four wall systems studied were identified as P2, P5, P11, and P14.

Each wall system was evaluated with and without a vapor retarder, and with and without water penetration as specified in ASHRAE 160-2009. Traditional practice does not typically require a vapor retarder in the southern climates, but these wall systems were modeled as well for completeness.

The wall orientation provided the maximum amount of rain to emulate water penetration. Therefore, whenever rainfall was detected, one percent of the rain incident on the exterior surface of the wall system was deposited into the wall’s exterior sheathing.

The interior boundary conditions were developed as per ASHRAE 160-2009 and the initial moisture contents of all wall components were set at their equilibrium moisture content at 80 percent RH. Solar radiation and cooling due to night sky radiation were included in the analyses.

Resulting data
The volume of data generated by these simulations cannot adequately be summarized in a short article. To trim the data down into a digestible portion, the results of Climate Zone 6 (Minneapolis) will be the focus—however, it is representative of the data generated by remaining seven Climate Zones.

Figures 6 through 12 summarize the monthly average heat flux through the four wall systems, and the moisture content of their exterior sheathings in Climate Zone 6 weather conditions over a three-year period. The four pairs of graphs compare the effects of leakage (none vs. ASHRAE 160) and the inclusion of a vapor retarder (none vs. 6-mil poly).

As a lightweight wall cladding, exterior insulation and fi nishing systems (EIFS) combines insulation with various thin synthetic coatings. Photo courtesy EIFS Industry Members Association

As a lightweight wall cladding, exterior insulation and finishing systems (EIFS) combines insulation with various thin synthetic coatings. Photo courtesy EIFS Industry Members Association

It is important to note EIFS configurations P2 and P11 yield the same energy efficiency, followed by EIFS P5 and Brick P14. The addition of leaks and vapor retarders does little to modify the energy performance of these walls in this climate; the walls are hygrothermally efficient enough to prevent sufficient moisture accumulation to impact their energy efficiency.

With no leakage and no poly, all wall systems maintain exterior sheathing moisture contents well below 80 percent RH. The addition of poly has little impact on the moisture contents. Wall EIFS P5 outperforms the other wall assemblies; the low interior RH maintains the exterior sheathing to a very low level of relative humidity.

When leakage is added to the wall assemblies in this climate, their hygrothermal performance changes minimally. Both configurations do add to the moisture contents of the walls’ exterior sheathings, but they are maintained at moisture content levels at or below the 80 percent RH level.

Energy efficiency
For all climate zones, the addition of the leak did not appreciably increase the heat flux. Adding a vapor retarder on the inside of the test walls, which would retard the internal drying potential or decrease the moisture flow from the building interior, did not change the moisture contents of the walls enough to affect their energy efficiency.

The researchers found little difference in the heat flux through the four test walls in Zone 1. Moving the wall systems to colder climates, EIFS Panels 2 and 11 exhibited the best energy performance, followed by EIFS Panel 5 and Brick Panel 14. The facts the simulations are one-dimensional—and the calculations are performed in the center of the cavity—explain why one sees no effect of the metal studs in EIFS Panel 11. The differences between EIFS Panels 2 and 11 and the other two test panels increase in colder climates.

Moisture performance
For all climate zones, panels combining no leakage and no vapor retarder deliver acceptable performance. That is also true for all panels with no leakage and a poly vapor retarder. The addition of the vapor retarder increases the sheathing moisture contents for all walls in the warmer Climate Zones 1 through 4, but this addition is relatively small and on the order of two to three mass percent—in other words, not enough to compromise the durability of the wall systems. In the more northern zones, the addition of a vapor retarder is neutral; all panels behave similarly with or without the vapor retarder.

The addition of a leak substantially increases the moisture contents of all wall assemblies. In Climate Zones 1 through 4, the panels without a vapor retarder come close to the 80 percent RH threshold (levels above 80 percent for extended periods are detrimental).

When a vapor retarder is added, the moisture contents rise even further and are at levels above 80 percent RH for months each year and as systems will eventually fail. In colder Climate Zones 5 through 8, the increase in moisture content after adding a vapor retarder is less severe, and the time the sheathing is at moisture contents exceeding 80 percent RH is substantially shorter.

Conclusion
Throughout the simulation, the three exterior insulation and finishing system configurations outperformed the brick wall system for the specific measured criteria across all climate zones, with EIFS Panel 5 performing the best overall. Joseph Lstiburek, an ASHRAE fellow and a principal at Building Science Corporation, was one of the first forensic engineers to sound the alarm over moisture buildup problems within barrier EIFS in the late 1980s. At that point, he did not think highly of the assemblies. This, however, has changed over time, and today he confirms he believes EIFS to be “a phenomenal system. They addressed the fundamental flaws they had in the 1990s by adding moisture management. And now EIFS resembles the perfect wall.”2

When considering the research in this article, it is important to remember all ‘test walls’ were constructed new. A test like this will not highlight differences 20 years down the road. Further, a scientific tracking of various actual envelopes built in many climate zones as to moisture and thermal performance, as well as to insurance costs and claims, will paint a broader, fuller comparative picture amongst claddings. Finally, this study was intended to measure only the moisture and thermal performance of these wall assemblies—there are other criteria design/construction professionals and building owners will take into consideration when selecting materials for their projects.

With both the 2012 IECC and ASHRAE 90-1 now stipulating continuous insulation building envelope for new construction, the outcome of this third and final phase of the ORNL trials is very good news indeed for EIFS.

Notes
1 This is per ASTM C1177, Standard Specification for Glass Mat Gypsum Substrate for Use as Sheathing.
2 For more, see the August 2013 issue of Architect, which featured the article, “Water Under the Bridge,” by Elizabeth Evitts Dickinson. Visit www.architectmagazine.com/technology/water-under-the-bridge.aspx. (This author recently spoke with Lstiburek and confirmed his quotation still stands.)

Ulf Wolf is the senior writer at Words & Images (www.words-images.com). Since 2007, he has been a regular contributor of articles to the Association of the Wall and Ceiling Industry’s (AWCI’s) Construction Dimensions magazine. Previously, he contributed “Greener Than You Think: Exterior Organic Solvent-based coatings” to the February 2011 issue of The Construction Specifier. He can be reached via e-mail at ulfwolf@gmail.com.

ASTM presenting EIFS symposium

ASTM International will be exploring the topic of exterior insulation and finish systems (EIFS) in a two-day series of talks this fall. Photo © BigStockPhoto/Lee Barnwell

This October, ASTM International is sponsoring a symposium on exterior insulation and finish systems (EIFS).

Entitled “Performance, Progress, and Innovation” the event will be held October 5 and 6 at the Sheraton New Orleans, coinciding with standards development meetings for Committee E06 on Performance of Buildings.

Papers will be presented in the following topic areas:
● continuous insulation (ci);
● energy codes and efficiency;
● sustainability and durability;
● fire performance;
● maintenance and façade inspection;
● code language and standards;
● Oak Ridge National Laboratory (ORNL) research;
● fluid-applied air/water-resistive barriers;
● decorative shapes;
● sealants;
● finishes and coatings; and
● future technologies/practices.

The symposium is directed at those professionals who primarily make their livelihood in the EIFS industry, and who depend on ASTM standards that govern this industry. This includes manufacturers, designers, architects, applicators, consultants, inspectors, and building owners.

For registration fees and additional information, visit www.astm.org/E06EIFSReg10-14.

Don’t Put All your Eggs in One Waterproof Basket

by John Chamberlin, MBA

This photo shows above-grade moisture protection with coating over joint treatment and rough opening protection. Photos courtesy Sto Corp.

“A building is only as strong as its foundation,” is a common idiom uttered across the construction industry. Time can be spent applying this to anything, in the metaphorical sense, but in the construction business it can be taken literally. The foundation is literally the building block on which the rest of a building will rely for long-term function and performance. Continue reading

Clarification on wall systems article

The April 2013 issue of The Construction Specifier included a technical feature by J.W. Mollohan, CSI, CCPR, CEP, LEED GA, entitled, “Exterior Wall Assemblies: Are You Getting What You Specified?”  We received the following letter from Cliff Black, a CSI member and a building envelope product manager for Firestone Building Products.

I am writing in regard to the article on exterior wall assemblies. I agree with the author the issue is certainly a challenging one for the design and specifying community. I would like to cite the bracketed statement at the top of page 57, which states, “buildings of two stories or more.” This appears to be taken in the context of the design of National Fire Protection Association (NFPA) 285, Standard Fire Test Method for Evaluation of Fire Propagation Characteristics of Exterior Non-load-bearing Wall Assemblies Containing Combustible Components, addressing multi-story fire propagation.

However, the International Building Code (IBC) 2603.5 states NFPA 285 is required for buildings of any height for Types I through IV construction incorporating combustible plastic insulation in the exterior wall assembly. IBC Chapter 14 (“Exterior Walls”) calls for differing requirements for water-resistant barriers (WRBs) and various combustible claddings, qualified by height.

In this case, I believe the statement should read “buildings of any height,” rather than “buildings of two stories or more.”

 

Mr. Mollohan replied to Mr. Black, and has allowed us to share it with other readers of the magazine:

 

Good catch, Clint! You are absolutely correct that one must be familiar with multiple chapters of the IBC to determine whether an NFPA 285 test is required. My error, and your correction, illustrates the difficulty of this provision. I am attaching an adaptation of a flow chart originally created by Barbara Horwitz-Bennett of DuPont Building Innovations for guidance to interested readers:

Diagram_edited-1