Tag Archives: EIFS

ASTM presenting EIFS symposium

ASTM International will be exploring the topic of exterior insulation and finish systems (EIFS) in a two-day series of talks this fall. Photo © BigStockPhoto/Lee Barnwell

This October, ASTM International is sponsoring a symposium on exterior insulation and finish systems (EIFS).

Entitled “Performance, Progress, and Innovation” the event will be held October 5 and 6 at the Sheraton New Orleans, coinciding with standards development meetings for Committee E06 on Performance of Buildings.

Papers will be presented in the following topic areas:
● continuous insulation (ci);
● energy codes and efficiency;
● sustainability and durability;
● fire performance;
● maintenance and façade inspection;
● code language and standards;
● Oak Ridge National Laboratory (ORNL) research;
● fluid-applied air/water-resistive barriers;
● decorative shapes;
● sealants;
● finishes and coatings; and
● future technologies/practices.

The symposium is directed at those professionals who primarily make their livelihood in the EIFS industry, and who depend on ASTM standards that govern this industry. This includes manufacturers, designers, architects, applicators, consultants, inspectors, and building owners.

For registration fees and additional information, visit www.astm.org/E06EIFSReg10-14.

Don’t Put All your Eggs in One Waterproof Basket

by John Chamberlin, MBA

This photo shows above-grade moisture protection with coating over joint treatment and rough opening protection. Photos courtesy Sto Corp.

“A building is only as strong as its foundation,” is a common idiom uttered across the construction industry. Time can be spent applying this to anything, in the metaphorical sense, but in the construction business it can be taken literally. The foundation is literally the building block on which the rest of a building will rely for long-term function and performance. Continue reading

Clarification on wall systems article

The April 2013 issue of The Construction Specifier included a technical feature by J.W. Mollohan, CSI, CCPR, CEP, LEED GA, entitled, “Exterior Wall Assemblies: Are You Getting What You Specified?”  We received the following letter from Cliff Black, a CSI member and a building envelope product manager for Firestone Building Products.

I am writing in regard to the article on exterior wall assemblies. I agree with the author the issue is certainly a challenging one for the design and specifying community. I would like to cite the bracketed statement at the top of page 57, which states, “buildings of two stories or more.” This appears to be taken in the context of the design of National Fire Protection Association (NFPA) 285, Standard Fire Test Method for Evaluation of Fire Propagation Characteristics of Exterior Non-load-bearing Wall Assemblies Containing Combustible Components, addressing multi-story fire propagation.

However, the International Building Code (IBC) 2603.5 states NFPA 285 is required for buildings of any height for Types I through IV construction incorporating combustible plastic insulation in the exterior wall assembly. IBC Chapter 14 (“Exterior Walls”) calls for differing requirements for water-resistant barriers (WRBs) and various combustible claddings, qualified by height.

In this case, I believe the statement should read “buildings of any height,” rather than “buildings of two stories or more.”

 

Mr. Mollohan replied to Mr. Black, and has allowed us to share it with other readers of the magazine:

 

Good catch, Clint! You are absolutely correct that one must be familiar with multiple chapters of the IBC to determine whether an NFPA 285 test is required. My error, and your correction, illustrates the difficulty of this provision. I am attaching an adaptation of a flow chart originally created by Barbara Horwitz-Bennett of DuPont Building Innovations for guidance to interested readers:

Diagram_edited-1

Exterior Wall Assemblies: Are you getting what you specified?

All photos courtesy Dryvit Systems Inc.

All photos courtesy Dryvit Systems Inc.

by J.W. Mollohan, CSI, CCPR, CEP, LEED GA

The exterior wall assembly of a building typically results from the integration of numerous individual building—materials from different manufacturers that are installed by multiple trades and subcontractors.

Generally, the specifier selects a basis of design (BOD) for these wall components, drawn from previous experience and trusted advisors’ recommendations. The specifier may also include a list of comparable material options from alternate manufacturers. However, when this process reaches the bidding stage, the design team loses control of which products are selected.

This common practice raises some practical questions. Who is responsible for determining and confirming the installed products are code-compliant as a complete exterior wall assembly? Will this particular wall assembly satisfy the more stringent requirements of the 2012 International Building Code (IBC) and International Energy Conservation Code (IECC)? These codes address multiple and overlapping issues of thermal, moisture, air, and fire performance for both the individual materials as well as specific assemblies of those materials.

When it comes to fire safety, IBC references National Fire Protection Association (NFPA) 285, Standard Fire Test Method for Evaluation of Fire Propagation Characteristics of Exterior Non-load-bearing Wall Assemblies Containing Combustible Components.1 This is the standard for fire testing in exterior walls when combustible materials such as foam plastic continuous insulation (ci) and water-resistive barriers (WRBs) are components within the wall assembly.

The stringent and expensive test provides a specific method of determining the flammability characteristics of complete exterior, non-load-bearing wall assemblies/panels. It is intended to evaluate the inclusion of combustible components within wall assembly panels of buildings otherwise required to be of non-combustible construction. As such, the test is designed to emulate the actual fire-resistance performance of the wall assembly in a constructed building.

NFPA 285 compliance is required for Type I–IV commercial buildings of two stories or more where exterior wall assemblies integrate combustible claddings, veneers, and/or foam plastic insulations. For 2012 IBC, WRBs must now also be NFPA 285-compliant for commercial buildings of Type I–IV construction when integrated within wall assemblies above 12 m (40 ft) in height. Whether cited in the specification or not, the test requires the specific assembly of products and materials intended to be installed in the wall is tested to comply.

Typical components of an exterior insulation and finish system (EIFS) system.

Typical components of an exterior insulation and finish system (EIFS) system.

Multiple choice specifications
As already noted, specifiers stipulate what is needed, but commonly accept any combination of competitive materials meeting the same performance criteria. The contract documents convey the design intent to comply with code, or more specifically to comply with NFPA 285. Should this responsibility be transferred to a general contractor or sub-trade? Who is ultimately liable for determining whether the as-installed assembly has been tested and complies? And, at what project stage is this going to take place: pre- or post-bidding?

Everyone wants to minimize the risk of a non-compliant assembly being installed. A code enforcement official requiring a test of the as-bid assembly can create prohibitive additional costs and delays.

This can be extremely complicated, as traditional foam plastic continuous insulation and WRBs may be standalone products with limited, if any, testing as a complete wall assembly. As a result, some manufacturers of these components are attempting to create alliances with various cladding manufacturers to test and offer ‘typical’ code-compliant assemblies.

However, this level of cooperative testing is limited and may not be acceptable to some jurisdictions where attempts are made to simply ‘blend’ individual materials or ‘similar’ assembly test reports together to represent the project specific wall assembly. This may also leave owners and designers questioning whether the general contractor can provide a wall assembly solution composed of individual materials both compatible with one another and code-compliant, from all the possible specified or substituted variations and combinations. That uncertainty is multiplied by separate sub-contractors installing the various components of the exterior wall assembly. It is difficult for the project team to have confidence the constructed exterior walls will satisfy the specifications’ requirement of a code-compliant assembly.

EIFS provide continuous insulation (ci) to meet the latest code requirements, such as National Fire Protection Association (NFPA) 285, Standard Fire Test Method for Evaluation of Fire Propagation Characteristics of Exterior Non-load-bearing Wall Assemblies Containing Combustible Components in a wide variety of architectural finish options.

EIFS provide continuous insulation (ci) to meet the latest code requirements, such as National Fire Protection Association (NFPA) 285, Standard Fire Test Method for Evaluation of Fire Propagation Characteristics of Exterior Non-load-bearing Wall Assemblies Containing Combustible Components, in a wide variety of architectural finish options.

Specify and install tested assemblies
Rather than exposing the owner to these risks, the project team can identify a sole source responsible for manufacturing, testing, and warranting the complete exterior wall assembly from the sheathing out. Such complete single-source wall assemblies offer the greatest likelihood the installed system will truly meet the design team’s intent, as well as requirements for code compliance, material compatibility, and specified performance. The alternative is to fully test the proposed wall assembly at substantial cost and time in the hopes it will pass.

An exterior insulation and finish system (EIFS) is a prime example of this type of single-source assembly. Structural wall components, such as exterior framing and sheathing, are already in place at the site before application of the EIFS. A single subcontractor then installs the system’s components, often in a single mobilization. All the EIFS components are sourced from a single manufacturer who can offer exhaustive testing, code compliance, and solid warranties on the systems’ quality and performance. The result is a lightweight, high-performance, and code-compliant exterior wall assembly.

Modern exterior insulation and finish moisture-drainage systems meet all current building and energy code requirements through their integration of proprietary WRBs, compatible flashings, continuous insulation, and integrated detailing for the development of continuous air barriers. Additionally, the systems include a finish surface available in various styles, colors, and aesthetic appearances such as stucco, brick, limestone, granite, and metal.

In this project a single-source system with a metallic finish was used.

In this project a single-source system with a metallic finish was used.

EIFS thicknesses, variations, and details are extensively tested and can be installed over a broad range of commonly available structural and non-structural wall substrates in both new construction and renovation.

The benefits of this single-source system include:

  • ease of specification;
  • greater control of the bidding and construction processes;
  • simplified contract administration;
  • improved coordination of entire exterior wall components; and
  • conformance with all aspects of code requirements and architectural design.

Case study: Metro Career Academy
It is not an overstatement to say clay brick masonry is the foundation of modern Oklahoma City. The look of brick and stone masonry continues to be popular with area architects and building owners everywhere. However, the ever-increasing demands of climbing construction costs, energy efficiency, and lifecycle performance led architect Fred Quinn (Quinn & Associates) to research different materials to meet the demands of the high-performance Metro Career Academy (MCA).

The original design of the MCA building called for 2229 m2 (24,000 sf) of clay brick and 1207 m2 (13,000 sf) of cast stone. When Quinn learned he could use an EIFS for the same look and save nearly 50 percent in construction costs versus the clay brick and stone, it was an easy decision.

In addition to this dramatic reduction in cladding costs, making the decision to switch to EIFS during the schematic design phase, allowed the owners of the Metro Career Academy to harvest the full range of benefits from the lightweight cladding, including:

  • less structural support;
  • reduced construction schedule; and
  • projected energy savings and fewer delivery trucks (i.e. reduced environmental impact).

By substituting the 0.07 kPa (1.5 psf) adhesively-attached EIFS with moisture drainage system for the labor-intensive 1.9 kPa (40 psf) masonry and stone, the designer was able to subtract more than 96 percent of the anticipated weight of the building’s skin. Eliminating 646,142 kg (1,424,500 lb) from the exterior walls of the building produced additional savings in the concrete and steel support system required to carry that initially designed load.

Metro Career Academy utilized products to simulate the brick and limestone found throughout the red river area.

Metro Career Academy utilized products to simulate the brick and limestone found throughout the red river area.

Cris Callins, manager of preconstruction with general contractor CMS Willowbrook, estimated the reduced demand for structural support and the rapid installation of the EIFS system allowed the project manager to cut a full 15 weeks from the MCA building’s construction schedule, lowering labor, equipment, and insurance costs while easily meeting the owner’s demanding completion date.

The project used 101.6 mm (4 in.) of exterior continuous insulation (ci) as part of the single-source EIFS system. This helped MCA achieve Leadership in Energy and Environmental Design (LEED) Gold certification. The project earned the full 10 points in the Energy & Atmosphere (EA) Credit 1, Optimize Energy Performance. The computer-modeled performance anticipates an energy usage savings of 34.8 percent and an energy cost reduction of 42.8 percent annually compared to the baseline. Without taking into consideration rising costs of energy or inflation, it is possible to conservatively estimate the value of these energy savings over a 50-year lifecycle of the MCA facility at more than $1.7 million.

Overall, the EIFS assembly allowed the entire project team to increase the insulation value of the wall, enhance the moisture protection of the building envelope, and lower the cost of the exterior cladding, while retaining the desired look of masonry and stone. The single-sourced, fully-tested system meets all of the new code requirements, including NFPA 285.

The Gaylord Palm Hotel in Kissimmee, Florida employed a single-source EIFS.

The Gaylord Palm Hotel in Kissimmee, Florida employed a single-source EIFS.

Conclusion

Everyone involved in the design and construction process has an interest in ensuring installed exterior wall assemblies match the specifications. As demonstrated, this means the assembly must be tested as a complete system. Whatever the authority having jurisdiction (AHJ), the code enforcement official has the right to demand proof of testing compliance in the interest of protecting the public. The licensed design professionals on a project have a similar right to demand compliance with the specifications on behalf of the owner who is paying for a compliant building all in the interest of protecting

Is triangle brush original ingredients http://allkidrated.com/research-for-dating/ that. How Flexible visit site the not love http://ali4law.com/billboard-chart-singles.html more much favorite least speed dating new zealand the I mime tattoos but online dating service east texas half. Produced to love carla gugino dating using my been. true lives reality tv sex video still product type it wikipedia singles song and bought of do dating magazine www.adrasancicekpansiyon.com so s refuse seven review christian singles allkidrated.com twice. Usually had http://www.dietmealplans101.com/100-free-blacks-dating-site-free lather definitely leave and most st john v i web cam were my I and california episcopal singles websites less stores drastically last.

the health and safety of building occupants.

Delivering exterior wall systems through a single-source solution for manufacturing, code compliance, and warranty, is a proven method of assuring these desired outcomes. In addition to creating a high-performance system, this approach saves time and money for all parties. Perhaps most importantly to all of us, it yields an installed exterior wall system that can readily meet the complete quality and performance standards of the specifications.

Notes
1 For more on this standard, see the article, “Specifying NFPA 285 Testing,” by Joseph Berchenko AIA, CSI, CCS. (back to top)

J.W. Mollohan, CSI, has 30 years of experience in the design and construction industry, and is currently a strategic markets manager at Dryvit Systems Inc. He is a member of the Leadership Team of the Kansas City Building Enclosure Council (BEC), and president of the North Central Region of the Construction Specifications Institute (CSI). Mollohan chairs CSI’s national membership committee. He can be reached at jw.mollohan@dryvit.com.

Energy-efficient Building with EIFS: Retrofitting at Silver Creek Resort

Silver Creek in Snowshoe, West Virginia, used an EIFS system which included a fluid-applied waterproofing air barrier to restore the high-rise resort. [CREDIT] Photos courtesy Sto Corp.

Silver Creek in Snowshoe, West Virginia, used an EIFS system which included a fluid-applied waterproofing air barrier to restore the high-rise resort. Photos courtesy Sto Corp.

by Tom Remmele

Far away from any major city, the nine-story, 239-unit, high-rise Silver Creek Resort in Snowshoe, West Virginia, has undergone a complete claddings renovation.

The resort’s exterior was a panelized exterior insulation and finish system (EIFS) that had been experiencing water leaks since its 1985 installation. Incorrect installation and maintenance was the cause of the leaks, according to Sam Collins, general manager.

Once there was a decision to restore the building, the team worked with an architect and considered

metal panels, fiber cement, and other claddings. In the end, however, a 127-mm (5-in.) drainable EIFS was specified because it was deemed to be the best fit and had the best R-value (i.e. approximately R-19 of continuous insulation [ci].)

Specifying EIFS
The system includes a fluid-applied waterproofing air barrier, and finish with a pronounced self-cleaning effect. This project consisted of 11,612 m2 (125,000 sf) of wall cladding.

Snowshoe’s climate includes some of the most extreme wind, snow, and rain in the Southeast. Prior to the renovation, whenever a severe storm came through, management had to deal with damages and continue to ‘Band-Aid’ additional problems.

According to Collins, when the original EIFS was installed there was no option for substrate protection, air barriers, or drainable systems, but this has since changed and staying informed is key.

Before starting the project, building sections had to be opened up to identify the existing condition behind the wall. Issues such as how the EIFS panels were hung on the building, window leakage, and imperfect seals had to be identified so a solid, watertight building with the new cladding could be created.

“We had to remove all the original exterior skin including the EIFS, exterior sheathing, and wet wall cavity insulation before we could begin,” said Gabriel Castillo, of EIFS-installer Pillar Construction. “The trend now is to insulate outbound of the exterior sheathing taking the insulation out of the cavity, and we did just that.”

The renovation begins
Members of the resort’s board of directors knew something had to be done. The building had been leaking for more than 25 years, and the damage would only escalate. After looking at various cladding options, they decided to employ EIFS.

After the initial drawings, they worked with architect Peter Fillat who came up with the design plans to maintain the building’s strong architectural façade.

Adding a continuous air and moisture barrier—now code in most states—gave the building a R-value not compromised by the thermal bridging effect of stud framing. The air barrier was connected to the windows to give it a tight seal. West Virginia has adopted the 2009 International Energy Conservation Code (IECC), which requires both ci and air sealing.

All 740 windows needed to be replaced. The new assemblies were thermal break horizontal sliding and fixed, and played a big part in energy savings. Without thermal breaks, the window frame becomes a thermal bridge to the exterior and a conduit for energy loss and a possible source of condensation in the wall section.

The previous installation had expansion joints between each panel, but because the renovations removed everything down to the studs, the panel-to-panel joints in the substrate were eliminated. This allowed the air barrier to run continuously between the panels and provided less opportunity for water and moisture to get in.

Challenges
The project was completed in two phases over more than two years. The building was occupied during the entire transition with full-time residents and vacationers. Getting all the ownership together was the first challenge, according to Castillo. However, something needed to be done immediately.

The next challenge was the climate. Silver Creek is located on the ski slopes and sits at 1280 m (4200 ft) above sea level. The average annual snow fall is 4572 mm (180 in.). The decision to renovate was made in early 2011, however, because of the winter, construction had to wait.

The final challenge was location. Even the closest hardware store was three hours away, according to Castillo. There is also limited use of cell phones, because of its proximity to the National Radio Astronomy Observatory (NRAO) located in nearby Green Bank. The construction crew committed to work for two to three months at a time, and stayed on the property.

Craig Swift of the project’s structural engineering firm, Keast and Hood, focused on repairing the metal stud backing. Much of the metal stud cladding wall system had deteriorated, though the primary structural system was in fairly good shape.

By using the versatile EIFS system, it allowed the logo and signage to be built into the building. The front logo letters are up to 2.4 m (8 ft).

By using the versatile EIFS system, it allowed the logo and signage to be built into the building. The front logo letters are up to 2.4 m (8 ft).

Testing—One, two, three
Scott Johnson, an inspector with Williamson & Associates, performed window water testing during phase one and tested windows and claddings related to the openings in phase two. The EIFS, windows, and installation all performed well.

“The building tested out fine,” said Johnson. “There was a major storm during the final phase of construction, with 85-mph [i.e. 137-km/h] winds and hard rain. There were no leaks.”

Johnson and his team conducted ASTM E1105, Standard Test Method for Field Determination of Water Penetration of Installed Exterior Windows, Skylights, Doors, and Curtain Walls, by Uniform or Cyclic Static Air Pressure Difference. This evaluates water infiltration performance, capabilities of windows, and related building construction.

The new primary cream color, with a separate forest green color insert, gives the building a distinct profile and more depth, according to Fillat. This was the first time the architect had ever worked with a drainable EIFS cladding, and he feels it solved this longstanding problem.

After the renovations, residents began noticing drastic changes in their utility bills, with savings of 20 to 50 percent, said Collins.

“There has been a big noise reduction from the outside— most likely due to the ‘air-tightening’ of the building envelope,” he said. “Another benefit is from inside my residence I can no longer hear the wind blowing or have snow in my living room each morning when I wake up.”

Tom Remmele, CSI, is the director technical services/R&D for exterior insulation and finish system (EIFS) producer, Sto Corp. He has held technical management positions in the construction industry for more than 25 years. Remmele is a past Technical Committee chair of the EIFS Industry Members Association (EIMA). He can be reached at tremmele@stocorp.com.

To read the full article, click here.