Put penetrations to the test: The effect of cladding attachments on air and water barriers

by Samantha Ashenhurst | July 12, 2018 2:06 pm

Photos courtesy SmithGroup and RRJ[1]
Photos courtesy SmithGroup and RRJ

by Sarah K. Flock, CDT, AIA, and Andrew Dunlap, AIA, CDT, LEED AP, NCARB
Guidelines for detailing and testing air and water barriers (AWB) with cladding attachments are limited. Installation practices are also not consistent across projects. Each of these penetrations have their own unique attachment method, with varying potential effects on air and water tightness and the building’s overall thermal performance. However, the impact these cladding attachments may have on the effectiveness of the AWB can easily be overlooked. Design professionals should be aware of the limitations of current terminology and test methods related to the performance of penetrations through the AWBs.

With the advent of high performance standards for the built world, enclosure design is expected to meet a number of parameters, including air control, moisture resistance (liquid and vapor), and thermal efficiency. To achieve these goals, a balance between many functions must be reached.

In some instances, the material providing air control can also offer moisture resistance. Occasionally, the materials employed to provide thermal control may also have the ability to restrict moisture and air transfer. In other situations, a number of different components can be utilized to achieve the various “control layers,” and the overall desired enclosure performance. To complicate matters, these selections can be impacted by climate, building use, value engineering, and emerging technologies.

Given these intricacies, technology for the air, water, and thermal control layers has evolved over the years. Historically, the enclosure typically included asphalt felt or building paper behind the cladding to limit moisture penetration. However, these materials did not provide functional air control. During this same era, batt insulation placed in the stud cavity was a common method to provide thermal control. A later generation of wall assemblies frequently incorporated a mechanically attached (non-adhered) sheet water-resistive barrier (WRB) that may have also limited air transfer. During this time frame, insulation was also starting to be installed outboard of the AWB. In current designs, fully-adhered or integral AWBs (both sheet and fluid applied) have become common, and exterior insulation is increasingly prevalent to meet the stringent energy codes in construction. As a result, greater attention is being paid to the development of thermally-efficient cladding attachment solutions, and several types of systems have been introduced into the market.

Some examples of thermally-efficient cladding attachments currently available in the industry include clip and rail, aluminum t-clips, and long screws (Figure 1). Each of these can have its own unique attachment method, with varying potential effects on air and water tightness and the overall thermal performance to be considered, understood, and addressed by design and construction professionals.

The design of the cladding attachment system can be developed by an engineer working for the architect, contractor, or cladding manufacturer. As a part of these efforts, the spacing of the supports is analyzed to make the best use of the exterior insulation and thermal performance, as well as to meet the needed structural requirements. This information can then be incorporated into the overall enclosure design. However, the impact these cladding attachments may have on the effectiveness of the AWB regarding air and water control can easily be overlooked (Figure 2).

Figure 1: Close-up of z-girts and pins at air and water barriers (AWB).[2]
Figure 1: Close-up of z-girts and pins at air and water barriers (AWB).

Product evaluation
Presently, ASTM D1970, Standard Specification for Self-Adhering Polymer Modified Bituminous Sheet Materials Used as Steep Roofing Underlayment for Ice Dam Protection, is frequently referenced in specifications and manufacturers’ literature to demonstrate a membrane’s “self-sealability” characteristics. The test method included in this standard applies a membrane to horizontally-oriented plywood with two nails penetrating the membrane and plywood (Figure 3). The nails are backed out 6.3 mm (¼-in.) and a 127-mm (5-in.) head of water is applied for three days. The results are classified as pass or fail and based on the observation of visible leakage. However, what do these test results mean? Can the user assume the results are similar with alternate substrates or other variables?

The industry is not yet consistent on terminology related to the performance of fastener penetrations through materials. Design and construction professionals should be aware of the significance and intent of the different terms. As discussed, ASTM D1970 can be used to demonstrate a material’s self-sealability around a nail. However, other terms such as “self-healing” and “self-gasketing” are also used interchangeably, when in fact, they have very different meanings. When it comes to defining self-sealing, certain manufacturers indicate the material properties can provide a seal around the shaft of the fastener. However, a fastener applied perpendicularly typically has a greater likelihood to pass the test than a fastener installed on an angle to the substrate. The probability of a perfectly installed fastener perpendicular to the substrate being replicated consistently and reliably in the field is challenging. Without an awareness of such limitations, users might assume a laboratory “pass” yields similar field performance.

The term self-gasketing is often suggested as a more appropriate one to describe what happens when a membrane is reported to create a closure around the head of a correctly installed fastener to help resist air and water transfer. Self-sealing membranes may provide some level of air and moisture control with varying levels of fastener engagement. However, membranes providing self-gasketing properties likely rely on fully setting of the fastener head to produce compression on the surface of the membrane for an air or watertight condition. This terminology clarification can be useful for design and construction professionals when developing project performance parameters.

Another limitation of ASTM D1970 is the use of nails with plywood, while the vast majority of current enclosure design and construction utilizes screws and gypsum sheathing/steel studs. First, a nail shank creates a different penetration profile than a screw. Second, many of the screws used are self-tapping. During installation, these types of fasteners may cause distress to the AWB at the penetration location from multiple actions (tearing, membrane walking up the threads, and auguring at the surface while the fastener tip is drilling through the steel stud). Varying substrates can also generate altered performance. These differences may also require consideration based on project-specific performance.

Figure 2: Leakage at fastener penetration through AWB.[3]
Figure 2: Leakage at fastener penetration through AWB.

ASTM D7349, Standard Test Method for Determining the Capability of Roofing and Waterproofing Materials to Seal around Fasteners, is similar to ASTM D1970 but includes a few allowable variables such as test duration, water depth, and whether or not an intervening material is used between the fastener and waterproofing material. It also provides guidance on which method can be used based on the specific roofing application. Just like ASTM D1970, this method provides limited value with respect to replicating real-life conditions of the vertical enclosure, and does not address the many other types of fastener penetrations in the market today.

Another standard used when evaluating sealability of fastener penetrations is American Architectural Manufacturers Association (AAMA) 711, Voluntary Specification for Self-Adhering Flashing Used for the Installation of Exterior Wall Fenestration Products. Section 5.2, “Water Penetration Resistance Around Nails,” addresses two test methods related to nails. The first incorporates a modified ASTM D1970 with the exception the water head is adjusted to 30.5 mm (1.2 in.) for a period of 24 hours and the nail heads are driven within 3 mm (18 in.) of the surface of the sample.

The second option in Section 5.2 incorporates modified versions of ASTM E331, Standard Test Method for Water Penetration of Exterior Windows, Skylights, Doors and Curtain Walls by Uniform Static Air Pressure Difference, and ASTM E547, Standard Test Method for Water Penetration of Exterior Windows, Skylights, Doors and Curtain Walls by Cyclic Static Air Pressure Difference. After the test specimens are prepared and penetrated with nails in a similar fashion to the first test method, water spray is then applied to the exterior while a differential pressure of 38 mm (1.5 in.) of water (373 Pa [7.8 psf]) is induced and maintained for a period of five minutes, released for one minute, and then repeated for four full cycles. Note this method orientates the panel vertically during the testing, which begins to relate to a vertically-oriented wall condition. After testing, the membrane edges are lifted away from the substrate to reveal the back. At this point, observations are made regarding evidence of water penetration. This procedure is then repeated with a second test specimen with five minutes at a higher pressure differential and then one minute with no pressure for four cycles, along with observations of the back of the membrane and substrate. Available data for this evaluation method is limited, since this option does not appear to be commonly utilized in the industry.

Something unique to AAMA 711 is both options require the testing to be conducted before and after thermal cycling of the samples. However, as currently published, these methods are ultimately subject to the same limitations as ASTM D1970 with the use of nails.

All of these test methodologies only focus on water penetration at fasteners. This leaves design and construction professionals to consider other options to evaluate air leakage.

ASTM E2357, Standard Test Method for Determining Air Leakage of Air Barrier Assemblies, is an available option to quantify the air leakage of air barrier assemblies. This standard requires three exterior wall specimens for testing. The assemblies are approximately 2.4 x 2.4 m (8 x 8 ft) and typically include wall framing, exterior sheathing, and the AWB. The first wall specimen is free of any penetrations, while the second includes several common penetrations such as brick ties, conduits, and windows (Figure 4). The third specimen includes the transitions between the wall and foundation, and between the wall and roof. The wall assemblies are preconditioned by being exposed to positive and negative wind loads (sustained, cyclic, and gusts). The results of the testing provide the air leakage rate with and without the various penetrations, and to be in compliance with certain building code provisions, must not exceed 0.2 L/(s•m2) @ 75Pa. (0.04 cfm/sf @ 1.57 psf). This can provide some understanding of the impact of the penetrations on the overall leakage of the assemblies, but it does not specifically identify the leakage of individual penetration types. Modifications and adaptations would be required for users to determine if the leakage is associated with the fasteners only. While this is valuable preconstruction information, this test method may not accurately represent the multitudes of variations of fastener installations encountered in actual construction. This test also does not allow for easy substitution of new or additional fasteners or penetrations entering the marketplace without retesting the entire assembly.

Given the limitations with currently available laboratory testing and the absence of information to predict actual service conditions, a gap between behavior in the laboratory and as-built performance can result. Design and construction professionals may wish to consider field evaluation and incorporate quality assurance testing to address these concerns.

Figure 5: An example of ASTM D4541, Standard Test Method for Pull-Off Strength of Coatings Using Portable Adhesion Testers, test.
Photos courtesy SmithGroup and RRJ

Field testing
While there are currently no standard field tests specifically for quantifying localized airtightness and watertightness of in-situ AWBs, there are exterior enclosure consultants using the following tests, or some combination thereof, to validate and evaluate, and promote quality assurance/control (QA/QC) efforts for the installed conditions:

The 2009 version of ASTM D4541 is commonly used to evaluate bond strength, but does not address air or water leakage directly, as it is an adhesion test only. However, it can be considered as a first step in the quality assurance process for the AWB. This test can provide information indicating the material is installed as intended, for a given substrate without any influence of a fastener or penetration (Figure 5). If this type of test is included as a project requirement, design and construction professionals should also consider indicating the bond strength desired for field testing. Manufacturers must be consulted prior to testing, and often will provide laboratory test results, but anticipated field values may be harder to obtain. Another consideration when incorporating this test method is variations in results can occur based on the tester and disc size used. To address some of these concerns, the Air Barrier Association of America (ABAA) has initiated research efforts to compile and analyze available data from audit reports to offer guidance, as well as to develop a test standard tailored specifically to air barrier adhesion and to standardize the approach and equipment.

The next step might be to consider localized, qualitative air leakage testing by performing ASTM E1186. It offers multiple options and procedures within one standard. The Chamber Depressurization in Conjunction With Leak Detection Liquid (“bubble gun”) and the Chamber Depressurization/Pressurization in Conjunction With Smoke Tracers are two tests often included in the field QA/QC plan.

The “bubble gun” is a simple and efficient field test to provide information related to airtightness of fastener penetrations. Air leakage detection fluid is applied over a fastener penetration in the AWB and then a pressure differential is created (Figure 6). The appearance of bubbles in the detection fluid indicates an air path is present (Figure 7).

Figure 6: “Bubble gun” testing per ASTM E1186, Standard Practices for Air Leakage Site Detection in Building Envelopes and Air Barrier Systems, in progress at AWB.[6]
Figure 6: “Bubble gun” testing per ASTM E1186, Standard Practices for Air Leakage Site Detection in Building Envelopes and Air Barrier Systems, in progress at AWB.

The (de)pressurized smoke tracer test requires a pressure differential of a large area, often necessitating a chamber. This test has the ability to qualitatively evaluate several penetrations at one time. ASTM E783 and ASTM E1105 also utilize a pressure differential chamber, so if those methods are already included as a part of project parameters, smoke tracer tests can be completed easily and efficiently.

ASTM E783 is commonly employed to quantify the air leakage of the field-installed window or door condition, but can be modified to evaluate other enclosure components such as air barrier assemblies. The results from this field test may be compared against the published assembly air leakage rate determined by ASTM E2357 in the laboratory, if similar conditions are evaluated.

The final test for consideration is related to water leakage. ASTM E1105 applies a water spray at the exterior face of an assembly at a required rate of
3.4 L/m2/min (5 g/ph/sf) with a specified air pressure differential. During testing, the interior face of the test area is inspected for water leakage. Under the published method, testing continues for 15 minutes, but consideration can be given to longer durations under specific conditions.

The size of the test areas, the frequency of performing the various tests, and the pressures applied for each of the test types should be considered for inclusion in project documents. Additionally, the time at which these tests are completed, as well as protocols to address failures, are also important considerations for design and construction professionals. Often, testing is completed once the cladding is installed. However, valuable information can be obtained when testing is completed after the installation of the attachments, but prior to the cladding. This is important to identify deficiencies early on, and to easily repair issues if discovered. While this article focuses on in-situ testing, mockups can also be a useful tool to allow testing to be performed prior to the commencement of large-scale implementation (Figure 8). It is also recommended design and construction professionals consider including an outline for the process to address any deficiencies identified during testing, the extent of repair needed, as well as if any additional testing is necessitated.

Figure 7: Bubbles produced during testing indicate leakage path.[7]
Figure 7: Bubbles produced during testing indicate leakage path.

Installation considerations
One may also seek other industry references when it comes to installation considerations of fasteners penetrating the AWB, but resources are limited. Some AWB manufacturers provide guidance for use and reference on the detailing of fasteners, which may establish minimum requirements, but may not produce durable long-term installations. These differences in practices can create problems related to bidding projects, inspecting installations, and durability of the wall assembly. The authors suggest the following can be considered for inclusion as execution requirements (Figure 9):

Research efforts
Given the limited resources, there is a need to develop installation methods that will provide durable and resilient solutions, as well as consensus test standards to validate the airtightness and watertightness of the as-built conditions.

The ABAA research committee and ASTM have both initiated efforts to address these issues and are in the process of developing new test methods to evaluate air/water leakage through fasteners and cladding attachments. The committees in both organizations include representation from manufacturers, architects, researchers, and industry professionals.

Under development within ABAA is a multistep process that may include a large-scale wall assembly test similar to ASTM E2357, but with the inclusion of a water penetration test similar to ASTM E331. A “sub-assembly” test to isolate individual fasteners or attachment devices in a singular test is also being discussed, with the goal intended to deliver product-specific results that can be substituted into the large-scale wall assembly test.

These tests will include variations on fastener installation methods, several types of preconditioning of the specimens, and testing at various pressure differential levels. With the information learned from this study, penetrations through enclosure elements can be better addressed to provide air and moisture management. ABAA is also beginning the process to develop field air and water tests similar to those previously indicated in this article but specifically for AWBs. ABAA and its research committee endeavors to further study this issue to produce meaningful data to assist the design and construction community. Additional studies are also being considered for laps, seams, and joints as similar AWB performance concerns to the fasteners may occur at these features.

Available guidelines for detailing and testing the installed AWB with cladding attachments can be limited, and installation practices are not consistent from project to project. Further, test methods that are currently being used by manufacturers and industry professionals may not be representative of built conditions. To further this point, most of the testing and terminology discussed earlier describes the fastener’s performance upon installation in a laboratory, rather than the long-term durability of the installed condition. A building can experience numerous and significant movement while in service which can have an effect on the air and watertightness of the fasteners securing exterior claddings and penetrating the AWB. It is recommended design and construction professionals consider these issues when dealing with the performance of penetrations through the AWB.

Sarah K. Flock, CDT, AIA, is an associate principal at Raths, Raths, and Johnson (RRJ). She has more than 15 years of architectural experience in water/moisture intrusion investigations, repair design, and field testing of distressed structures, nonperforming buildings, and material systems. Specializing in building enclosure assessment, Flock has performed hygrothermal modeling to analyze a wide range of projects involving various types of building materials and systems. Her experience has involved peer review of building enclosures and assemblies to ensure the designs meet codes and standards for energy efficiency and environmental performance. Flock is the co-chair of the research committee and on the board of directors for The Air Barrier Association of America (ABAA). She can be contacted via e-mail at skflock@rrj.com[10].

Andrew Dunlap, AIA, CDT, LEED AP, NCARB, is leader of the building technology studio at SmithGroupJJR. His primary work experience is in the analysis and development of exterior building enclosures including roofing, skylights, windows, curtain walls, rainscreen/cavity walls, and waterproofing. Dunlap regularly participates in reviewing and validating building designs for energy code compliance or to provide design options for exceeding code requirements. He received his B. Arch, B.S. in mathematics, and M. Arch degrees from the University of Detroit Mercy. Dunlap is the co-chair of ABAA research committee and is a member of the board. He can be reached at andrew.dunlap@smithgroupjjr.com[11].

  1. [Image]: https://www.constructionspecifier.com/wp-content/uploads/2018/07/IMG_2743.jpg
  2. [Image]: https://www.constructionspecifier.com/wp-content/uploads/2018/07/20180404_154823.jpg
  3. [Image]: https://www.constructionspecifier.com/wp-content/uploads/2018/07/IMG_2027.jpg
  4. [Image]: https://www.constructionspecifier.com/wp-content/uploads/2018/07/sealability-testing.jpg
  5. [Image]: https://www.constructionspecifier.com/wp-content/uploads/2018/07/IMG_0536.jpg
  6. [Image]: https://www.constructionspecifier.com/wp-content/uploads/2018/07/bubble-gun.jpg
  7. [Image]: https://www.constructionspecifier.com/wp-content/uploads/2018/07/IMG_0553.jpg
  8. [Image]: https://www.constructionspecifier.com/wp-content/uploads/2018/07/IMG_0567.jpg
  9. [Image]: https://www.constructionspecifier.com/wp-content/uploads/2018/07/20160915-CCC-1500.jpg
  10. skflock@rrj.com: mailto:skflock@rrj.com
  11. andrew.dunlap@smithgroupjjr.com: mailto:andrew.dunlap@smithgroupjjr.com

Source URL: https://www.constructionspecifier.com/put-penetrations-to-the-test-the-effect-of-cladding-attachments-on-air-and-water-barriers/