Conclusion Recent flooding events have shown the importance of deployment time for infrastructure flood protection systems. The devastating damage and economic loss totals, as well as the loss of life, from Superstorm Sandy demonstrated current floodproofing techniques are useless when they are not deployed. The traditional systems of employing solid, metal barriers or logs require massive storage space and extensive setup and deployment time. The new dry floodproofing concept of flexible, soft goods stored at the point of use addresses these issues and may be the solution building owners, architects, and builders never knew they needed.
CUSTOMIZING A STAIRWELL SOLUTION
This flexible flood gate is a high-strength, point-of-use stored, and rapidly deployable protector of stairwells. Currently being used across the New York City subway system, it is scalable to water levels up to 9 m (39 ft) and can be deployed during high winds.
This flexible flood gate is a high-strength, point-of-use stored, and rapidly deployable protector of stairwells. Currently being used across the New York City subway system, it is scalable to water levels up to 9 m (30 ft) and can be deployed during high winds.
A high-strength closure for New York City’s subway system stairwells is constructed from textile-based materials within a structural frame; it was born out of the need for rapidly deployed, flood protection stored onsite. The key requirements by the client included the ability to be stored at the point of use to allow the system to stay open until the last minute, provide a return to normal operations faster, and ensure components are not misplaced between events. The system also needed to be able to withstand up to 4.3 m (14 ft) of water head pressure, given updated Federal Emergency Management Agency (FEMA) flood maps.
For this project, no inward loads could be placed on the concrete structure of the stairwell—in other words, the floodproofing system needed to react to all inward loads. It also could not encroach on the stairwell, along the sides, at the top step, or at the header. The assembly, which needed to be able to withstand vandalism, was required to be deployed by transit station personnel in under 30 minutes. It also needed to be deployed mechanically rather than rely on power that may be unavailable during a major storm.
Achieving these goals involved using soft goods technology developed for National Aeronautics and Space Administration (NASA) programs such as the spacesuits that walked on the moon, the Pathfinder Landing impact bags that supported successful landings on Mars, and inflatable space habitats. The benefits of textile tension fabric membranes include:
storage in small volumes—a 1.8-m wide x 3.7-m long (6 x 12-ft) stairwell cover fits on a 330-mm (13-in.) diameter spool inside a 380-mm (15-in.) wide storage container;
ability to withstand high loads at significantly lower weights than steel structures—a 1.8 x 3.7-m cover tested to 4.9 m (16 ft) of water weighed 33 kg (72 lb), as opposed to the steel lid of the test fixture, which weighed 3400 kg (7500 lb) to react the same load; and
scalability to meet various hydrostatic and hydrodynamic loads—accomplished by selecting different structural webbings to meet challenges to 9.1 m (30 ft) of head pressure and more.
The stairwell waterproofing system functions similarly to a window shade or rollup storefront security door. The primary components include its cover, storage container, gate guides, and top-step deployment mechanism. When the notice to deploy is given, the tamperproof cover plates on the gate guides are released and the top step is opened. The cover is deployed by retrieving a T-bar from the storage container and turning a drive spool that allows integral cables to pull the cover through the gate guides toward the top-step mechanism. Once fully deployed, the cover is bolted in place via a seal bar integral to the cover. The seal is accomplished at the gate guides and top-step seal bar.
The fabric cover chosen for this application includes Hypalon-coated Kevlar, a tightly woven structural netting made with 3855-kg (8500-lb) Kevlar webbings, and a Kevlar rope sewn into the assembly to function as the ‘dead man’ to prevent pullout and assist in sealing along the gate guides.
To date, 24 systems have been installed at New York City subway entrances, and are at the ready for the next major storm event.
Brian Shaw, CFM, is the director of sales and marketing for Smart Vent Products Inc. He has studied the science of flood mitigation for more than a decade, with a concentration in proper floodproofing techniques to ensure resilient structures. Shaw analyzes the role of building compliance in securing lower flood insurance rates and available mitigation solutions. As a Certified Floodplain Manager, he has traveled the country to educate professionals on the U.S. Federal Emergency Management Agency’s (FEMA’s) wet and dry floodproofing regulations and floodplain related issues with a primary focus on working with architects, engineers, and city officials. Shaw can be reached at bshaw@smartvent.com.
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
Cookie
Duration
Description
cookielawinfo-checkbox-analytics
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional
11 months
The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
JSESSIONID
session
The JSESSIONID cookie is used by New Relic to store a session identifier so that New Relic can monitor session counts for an application.
viewed_cookie_policy
11 months
The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Cookie
Duration
Description
__cf_bm
30 minutes
This cookie, set by Cloudflare, is used to support Cloudflare Bot Management.
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Cookie
Duration
Description
_ga
2 years
The _ga cookie, installed by Google Analytics, calculates visitor, session and campaign data and also keeps track of site usage for the site's analytics report. The cookie stores information anonymously and assigns a randomly generated number to recognize unique visitors.
_gat
1 minute
This cookie is installed by Google Universal Analytics to restrain request rate and thus limit the collection of data on high traffic sites.
_gat_UA-
1 minute
A variation of the _gat cookie set by Google Analytics and Google Tag Manager to allow website owners to track visitor behaviour and measure site performance. The pattern element in the name contains the unique identity number of the account or website it relates to.
_gid
1 day
Installed by Google Analytics, _gid cookie stores information on how visitors use a website, while also creating an analytics report of the website's performance. Some of the data that are collected include the number of visitors, their source, and the pages they visit anonymously.
CONSENT
2 years
YouTube sets this cookie via embedded youtube-videos and registers anonymous statistical data.
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Cookie
Duration
Description
ADV_u_id
3 months 8 days
Unique customer identifier used to track unique ad views and interactions with some ads.
loc
never
AddThis sets this geolocation cookie to help understand the location of users who share the information.
OAGEO
session
OpenX sets this cookie to avoid the repeated display of the same ad.
OAID
1 year
Cookie set to record whether the user has opted out of the collection of information by the AdsWizz Service Cookies.
VISITOR_INFO1_LIVE
5 months 27 days
A cookie set by YouTube to measure bandwidth that determines whether the user gets the new or old player interface.
YSC
session
YSC cookie is set by Youtube and is used to track the views of embedded videos on Youtube pages.